## Project Euler – Problem 13

Here we have another qualified problem from Project Euler. You might want to work out the problem before see my solution.

The basic idea of my solution is to not use all the digits of the given numbers, instead extract the part of the each number that is necessary to sum up to conclude the first 10 digits of the result. I try to explain my approach at the top of the source code with my lacking MATH english. If you have any problem for that part please leave me a comment.

```'''
Eren Golge - erengolg@gmail.com
we do not need to sum all the numbers to get first ten integers. We decide the partition of each 50 digit
number by observing the expected result. Observe that first 10 digits of each number  be required for sure,
nevertheless we also need to consider the carries coming from lower orders. If we think all the lower
order numbers as 9 for each 50 digit number (worst case) then each lower oreder is able to effect its 2 higher
orders (since after 100 summation 9+9+9+9.... = 900). Therefore we expend the window to 2 lower order as well.
However we also have 100 numbers to sum hence each order will be shifted to left by 2 at the end of the summation.
It also extends the window 2 order more. At the end we conclude a window of digits from 50 to 36.
'''
numbers = "37107287533902102798797998220837590246510135740250 - 46376937677490009712648124896970078050417018260538 - 74324986199524741059474233309513058123726617309629 - 91942213363574161572522430563301811072406154908250 - 23067588207539346171171980310421047513778063246676 - 89261670696623633820136378418383684178734361726757 - 28112879812849979408065481931592621691275889832738 - 44274228917432520321923589422876796487670272189318 - 47451445736001306439091167216856844588711603153276 - 70386486105843025439939619828917593665686757934951 - 62176457141856560629502157223196586755079324193331 - 64906352462741904929101432445813822663347944758178 - 92575867718337217661963751590579239728245598838407 - 58203565325359399008402633568948830189458628227828 - 80181199384826282014278194139940567587151170094390 - 35398664372827112653829987240784473053190104293586 - 86515506006295864861532075273371959191420517255829 - 71693888707715466499115593487603532921714970056938 - 54370070576826684624621495650076471787294438377604 - 53282654108756828443191190634694037855217779295145 - 36123272525000296071075082563815656710885258350721 - 45876576172410976447339110607218265236877223636045 - 17423706905851860660448207621209813287860733969412 - 81142660418086830619328460811191061556940512689692 - 51934325451728388641918047049293215058642563049483 - 62467221648435076201727918039944693004732956340691 - 15732444386908125794514089057706229429197107928209 - 55037687525678773091862540744969844508330393682126 - 18336384825330154686196124348767681297534375946515 - 80386287592878490201521685554828717201219257766954 - 78182833757993103614740356856449095527097864797581 - 16726320100436897842553539920931837441497806860984 - 48403098129077791799088218795327364475675590848030 - 87086987551392711854517078544161852424320693150332 - 59959406895756536782107074926966537676326235447210 - 69793950679652694742597709739166693763042633987085 - 41052684708299085211399427365734116182760315001271 - 65378607361501080857009149939512557028198746004375 - 35829035317434717326932123578154982629742552737307 - 94953759765105305946966067683156574377167401875275 - 88902802571733229619176668713819931811048770190271 - 25267680276078003013678680992525463401061632866526 - 36270218540497705585629946580636237993140746255962 - 24074486908231174977792365466257246923322810917141 - 91430288197103288597806669760892938638285025333403 - 34413065578016127815921815005561868836468420090470 - 23053081172816430487623791969842487255036638784583 - 11487696932154902810424020138335124462181441773470 - 63783299490636259666498587618221225225512486764533 - 67720186971698544312419572409913959008952310058822 - 95548255300263520781532296796249481641953868218774 - 76085327132285723110424803456124867697064507995236 - 37774242535411291684276865538926205024910326572967 - 23701913275725675285653248258265463092207058596522 - 29798860272258331913126375147341994889534765745501 - 18495701454879288984856827726077713721403798879715 - 38298203783031473527721580348144513491373226651381 - 34829543829199918180278916522431027392251122869539 - 40957953066405232632538044100059654939159879593635 - 29746152185502371307642255121183693803580388584903 - 41698116222072977186158236678424689157993532961922 - 62467957194401269043877107275048102390895523597457 - 23189706772547915061505504953922979530901129967519 - 86188088225875314529584099251203829009407770775672 - 11306739708304724483816533873502340845647058077308 - 82959174767140363198008187129011875491310547126581 - 97623331044818386269515456334926366572897563400500 - 42846280183517070527831839425882145521227251250327 - 55121603546981200581762165212827652751691296897789 - 32238195734329339946437501907836945765883352399886 - 75506164965184775180738168837861091527357929701337 - 62177842752192623401942399639168044983993173312731 - 32924185707147349566916674687634660915035914677504 - 99518671430235219628894890102423325116913619626622 - 73267460800591547471830798392868535206946944540724 - 76841822524674417161514036427982273348055556214818 - 97142617910342598647204516893989422179826088076852 - 87783646182799346313767754307809363333018982642090 - 10848802521674670883215120185883543223812876952786 - 71329612474782464538636993009049310363619763878039 - 62184073572399794223406235393808339651327408011116 - 66627891981488087797941876876144230030984490851411 - 60661826293682836764744779239180335110989069790714 - 85786944089552990653640447425576083659976645795096 - 66024396409905389607120198219976047599490197230297 - 64913982680032973156037120041377903785566085089252 - 16730939319872750275468906903707539413042652315011 - 94809377245048795150954100921645863754710598436791 - 78639167021187492431995700641917969777599028300699 - 15368713711936614952811305876380278410754449733078 - 40789923115535562561142322423255033685442488917353 - 44889911501440648020369068063960672322193204149535 - 41503128880339536053299340368006977710650566631954 - 81234880673210146739058568557934581403627822703280 - 82616570773948327592232845941706525094512325230608 - 22918802058777319719839450180888072429661980811197 - 77158542502016545090413245809786882778948721859617 - 72107838435069186155435662884062257473692284509516 - 20849603980134001723930671666823555245252804609722 - 53503534226472524250874054075591789781264330331690"

def partition_numbers(numbers_string):
return map(int,numbers_string.split(' - '))

def sum_first_n_order(n, numbers):
total = 0
for num in numbers:
if len(str(num)) < n:
raise StopIteration
numstr = str(num)
num_part_str = numstr[0:n+1]
total += int(num_part_str)