Online Hard Example Mining on PyTorch
Online Hard Example Mining (OHEM) is a way to pick hard examples with reduced computation cost to improve your network performance on borderline cases which generalize to the general performance. It is mostly used for Object Detection. Suppose you like to train a car detector and you have positive (with car) and negative images (with no car). Now you like to train your network. In practice, you find yourself in many negatives as oppose to relatively much small positives. To this end, it is clever to pick a subset of negatives that are the most informative for your network. Hard Example Mining is the way to go to this.

In a detection problem, hard examples corresponds to false positive detection depicted here with red.
In general, to pick a subset of negatives, first you train your network for couple of iterations, then you run your network all along your negative instances then you pick the ones with the greater loss values. However, it is very computationally toilsome since you have possibly millions of images to process, and sub-optimal for your optimization since you freeze your network while picking your hard instances that are not all being used for the next couple of iterations. That is, you assume here all hard negatives you pick are useful for all the next iterations until the next selection. Which is an imperfect assumption especially for large datasets.
Okay, what Online means in this regard. OHEM solves these two aforementioned problems by performing hard example selection batch-wise. Given a batch sized K, it performs regular forward propagation and computes per instance losses. Then, it finds M<K hard examples in the batch with high loss values and it only back-propagates the loss computed over the selected instances. Smart hah ? 🙂
It reduces computation by running hand to hand with your regular optimization cycle. It also unties the assumption of the foreseen usefulness by picking hard examples per iteration so thus we now really pick the hard examples for each iteration.
If you like to test yourself, here is PyTorch OHEM implementation that I offer you to use a bit of grain of salt.
SPP network for Pytorch
Installing OpenCV 3.2 to Anaconda Environment with ffmpeg Support
Sometimes, It is really a mess to try installing OpenCV to your system. Nevertheless, it is really great library for any case of vision and you are obliged to use it. (No complain, just C++).
I try to list my commands here in a sequence and hope it will work for you too.
Install dependencies
apt install gcc g++ git libjpeg-dev libpng-dev libtiff5-dev libjasper-dev libavcodec-dev libavformat-dev libswscale-dev pkg-config cmake libgtk2.0-dev libeigen3-dev libtheora-dev libvorbis-dev libxvidcore-dev libx264-dev sphinx-common libtbb-dev yasm libfaac-dev libopencore-amrnb-dev libopencore-amrwb-dev libopenexr-dev libgstreamer-plugins-base1.0-dev libavcodec-dev libavutil-dev libavfilter-dev libavformat-dev libavresample-dev conda install libgcc
Download OpenCV
//First, go to your folder to hosting installation wget https://github.com/Itseez/opencv/archive/3.2.0.zip unzip 3.2.0.zip cd opencv-3.2.0 mkdir build cd build
Cmake and Setup Opencv
This cmake command targets python3.x and your target virtual environment. Therefore, before running it activate your environment. Do not forget to check flags depending on your case.
cmake -DWITH_CUDA=OFF -DBUILD_TIFF=ON -DBUILD_opencv_java=OFF -DENABLE_AVX=ON -DWITH_OPENGL=ON -DWITH_OPENCL=ON -DWITH_IPP=ON -DWITH_TBB=ON -DWITH_EIGEN=ON -DWITH_V4L=ON -DWITH_VTK=OFF -DBUILD_TESTS=OFF -DBUILD_PERF_TESTS=OFF -DCMAKE_BUILD_TYPE=RELEASE -DBUILD_opencv_python2=OFF -DCMAKE_INSTALL_PREFIX=(which python3) -DPYTHON3_INCLUDE_DIR=
(python3 -c "from distutils.sysconfig import get_python_lib; print(get_python_lib())") -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D INSTALL_PYTHON_EXAMPLES=ON -D INSTALL_C_EXAMPLES=OFF -D PYTHON_EXECUTABLE=~/miniconda3/envs/dl/bin/python -D BUILD_EXAMPLES=ON .. make -j 4 sudo make install
Then check your installation on Python
import cv2 print(cv2.__version__) # should output opencv-3.2.0
How to use Python Decorators
Decorators are handy sugars for Python programmers to shorten things and provides more concise programming.
For instance you can use decorators for user authentication for your REST API servers. Assume that, you need to auth. the user for before each REST calls. Instead of appending the same procedure to each call function, it is better to define decorator and tagging it onto your call functions.
Let’s see the small example below. I hope it is self-descriptive.
""" How to use Decorators: Decorators are functions called by annotations Annotations are the tags prefixed by @ """ ### Decorator functions ### def helloSpace(target_func): def new_func(): print "Hello Space!" target_func() return new_func def helloCosmos(target_func): def new_func(): print "Hello Cosmos!" target_func() return new_func @helloCosmos # annotation @helloSpace # annotation def hello(): print "Hello World!" ### Above code is equivalent to these lines # hello = helloSpace(hello) # hello = helloCosmos(hello) ### Let's Try hello()